published in: Journal of Risk and Financial Management, 2020, 13, 290
Estimation of the causal effect of a binary treatment on outcomes often requires conditioning on covariates to address selection on observed variables. This is not straightforward when one or more of the covariates are measured with error. Here, we present a new semi-parametric estimator that addresses this issue. In particular, we focus on inverse propensity score weighting estimators when the propensity score is of an unknown functional form and some covariates are subject to classical measurement error. Our proposed solution involves deconvolution kernel estimators of the propensity score and the regression function weighted by a deconvolution kernel density estimator. Simulations and replication of a study examining the impact of two financial literacy interventions on the business practices of entrepreneurs show our estimator to be valuable to empirical researchers.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.