published in: Economic Analysis and Policy, 2021, 69, 668-675
In many countries, schools have responded to the COVID-19 pandemic by splitting up classes. While the purpose of dividing classes is clearly health-related, the process of doing so poses an interesting question: what is the best way to divide a class so as to maximize the incentive for students to perform better? Using a constructive example, we demonstrate how social-psychological unhappiness can be the basis for an incentive structure that optimally nudges students to improve their performance. The example is based on evidence that students aspire to improve their performance when it lags behind that of other students with whom they naturally compare themselves. For a given set of m students, we quantify unhappiness by the index of relative deprivation, which measures the extent to which a student lags behind other students in the set who are doing better than him.
We examine how to divide the set into an exogenously predetermined number of subsets in order to maximize aggregate relative deprivation, so that the incentive for the students to study harder because of unfavorable comparison with other students is at its strongest. We show that the solution to this problem depends only on the students' ordinally-measured levels of performance, independent of the performance of comparators. In addition, we find that when m is an even number, there are multiple optimal divisions, whereas when m is an odd number, there is only one optimal division.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.