IZA DP No. 16630: (Frisch-Waugh-Lovell)' On the Estimation of Regression Models by Row
Damian Clarke, Nicolás Paris Torres, Benjamin Villena-Roldan
We demonstrate that regression models can be estimated by working independently in a row-wise fashion. We document a simple procedure which allows for a wide class of econometric estimators to be implemented cumulatively, where, in the limit, estimators can be produced without ever storing more than a single line of data in a computer's memory. This result is useful in understanding the mechanics of many common regression models. These procedures can be used to speed up the computation of estimates computed via OLS, IV, Ridge regression, LASSO, Elastic Net, and Non-linear models including probit and logit, with all common modes of inference. This has implications for estimation and inference with 'big data', where memory constraints may imply that working with all data at once is particularly costly. We additionally show that even with moderately sized datasets, this method can reduce computation time compared with traditional estimation routines.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.