published in: Economics Letters, 2012, 114 (2), 186-189
We examine instrumental variables estimation in situations where the instrument is only observed for a sub-sample, which is fairly common in empirical research. Typically, researchers simply limit the analysis to the sub-sample where the instrument is non-missing. We show that when the instrument is non-randomly missing, standard IV estimators require strong, auxiliary assumptions to be consistent. In many (quasi)natural experiments, the auxiliary assumptions are unlikely to hold. We therefore introduce alternative IV estimators that are robust to non-randomly missing instruments without auxiliary assumptions. A Monte-Carlo study illustrates our results.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.