Consider a setting where a treatment that starts at some point during a spell (e.g. in unemployment) may impact on the hazard rate of the spell duration, and where the impact may be heterogeneous across subjects. We provide Monte Carlo evidence on the feasibility of estimating the distribution of treatment effects from duration data with selectivity, by means of a nonparametric maximum likelihood estimator with unrestricted numbers of mass points for the heterogeneity distribution. We find that specifying the treatment effect as homogenous may yield misleading average results if the true effects are heterogeneous, even when the sorting into treatment is appropriately accounted for. Specifying the treatment effect as a random coefficient allows for precise estimation of informative average treatment effects including the program’s overall impact on the mean duration.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.