published in: Journal of Economic Inequality, 2013, 11 (3), 343-372
In this paper we study the performance of the GMM estimator in the context of the covariance structure of earnings. Using analytical and Monte Carlo techniques we examine the sensitivity of parameter identification to key features such as panel length, sample size, the degree of persistence of earnings shocks and the evolution of inequality over time. We show that the interaction of transitory persistence with the time pattern of inequality determines identification in these models and offer some practical recommendations that follow from our findings.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.