revised version published in: Journal of Econometrics, 2012, 168 (2), 382-395
This paper shows nonparametric identification of quantile treatment effects (QTE) in the regression discontinuity design. The distributional impacts of social programs such as welfare, education, training programs and unemployment insurance are of large interest to economists. QTE are an intuitive tool to characterize the effects of these interventions on the outcome distribution. We propose uniformly consistent estimators for both potential outcome distributions (treated and non-treated) for the population of interest as well as other function-valued effects of the policy including in particular the QTE process. The estimators are straightforward to implement and attain the optimal rate of convergence for one-dimensional nonparametric regression. We apply the proposed estimators to estimate the effects of summer school on the distribution of school grades, complementing the results of Jacob and Lefgren (2004).
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.