This paper uses the control function to develop a framework for testing for selection bias. The idea behind our framework is if the usual assumptions hold for matching or IV estimators, the control function identifies the presence and magnitude of potential selection bias. Averaging this correction term with respect to appropriate weights yields the degree of selection bias for alternative treatment effects of interest. One advantage of our framework is that it motivates when is appropriate to use more efficient estimators of treatment effects, such as those based on least squares or matching. Another advantage of our approach is that it provides an estimate of the magnitude of the selection bias. We also show how this estimate can help when trying to infer program impacts for program participants not covered by LATE estimates.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.