When the running variable in a regression discontinuity (RD) design is measured with error, identification of the local average treatment effect of interest will typically fail. While the form of this measurement error varies across applications, in many cases the measurement error structure is heterogeneous across different groups of observations. We develop a novel measurement error correction procedure capable of addressing heterogeneous mismeasurement structures by leveraging auxiliary information. We also provide adjusted asymptotic variance and standard errors that take into consideration the variability introduced by the estimation of nuisance parameters, and honest confidence intervals that account for potential misspecification.
Simulations provide evidence that the proposed procedure corrects the bias introduced by heterogeneous measurement error and achieves empirical coverage closer to nominal test size than "naïve" alternatives. Two empirical illustrations demonstrate that correcting for measurement error can either reinforce the results of a study or provide a new empirical perspective on the data.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.