published in: European Sociological Review, 2016, 32 (1), 3–22
Cross-national differences in outcomes are often analysed using regression analysis of multilevel country datasets, examples of which include the ECHP, ESS, EU-SILC, EVS, ISSP, and SHARE. We review the regression methods applicable to this data structure, pointing out problems with the assessment of country-level factors that appear not to be widely appreciated, and illustrate our arguments using Monte-Carlo simulations and analysis of women's employment probabilities and work hours using EU SILC data. With large sample sizes of individuals within each country but a small number of countries, analysts can reliably estimate individual-level effects within each country but estimates of parameters summarising country effects are likely to be unreliable. Multilevel (hierarchical) modelling methods are commonly used in this context but they are no panacea.
We use cookies to provide you with an optimal website experience. This includes cookies that are necessary for the operation of the site as well as cookies that are only used for anonymous statistical purposes, for comfort settings or to display personalized content. You can decide for yourself which categories you want to allow. Please note that based on your settings, you may not be able to use all of the site's functions.
Cookie settings
These necessary cookies are required to activate the core functionality of the website. An opt-out from these technologies is not available.
In order to further improve our offer and our website, we collect anonymous data for statistics and analyses. With the help of these cookies we can, for example, determine the number of visitors and the effect of certain pages on our website and optimize our content.